Exercise 5B

1 a 2.71828
b 54.59815
c 0.00005
d 1.22140
2 a

c $\mathrm{e}=2.71828 \ldots$
$e^{3}=20.08553$..

3 a $y=\mathrm{e}^{x}+1$

This is the usual $y=\mathrm{e}^{x}$ ' moved up' (translated) 1 unit

3 b $y=4 \mathrm{e}^{-2 x}$

$x=0 \Rightarrow y=4$
As $x \rightarrow-\infty, y \rightarrow \infty$
As $x \rightarrow \infty, y \rightarrow 0$
This is an exponential decay type of graph.
c $y=2 \mathrm{e}^{x}-3$

$x=0 \Rightarrow y=2 \times 1-3=-1$
As $x \rightarrow \infty, y \rightarrow \infty$
As $x \rightarrow-\infty, y \rightarrow 2 \times 0-3=-3$
d $y=4-\mathrm{e}^{x}$

$x=0 \Rightarrow y=4-1=3$
As $x \rightarrow \infty, y \rightarrow 4-\infty$, i.e. $y \rightarrow-\infty$
As $x \rightarrow-\infty, y \rightarrow 4-0=4$

Pure Mathematics 3

3 e $y=6+10 \mathrm{e}^{\frac{1}{2} x}$

$x=0 \Rightarrow y=6+10 \times 1=16$
As $x \rightarrow \infty, y \rightarrow \infty$
As $x \rightarrow-\infty, y \rightarrow 6+10 \times 0=6$
f $y=100 \mathrm{e}^{-x}+10$

$x=0 \Rightarrow y=100 \times 1+10=110$
As $x \rightarrow \infty, y \rightarrow 100 \times 0+10=10$
As $x \rightarrow-\infty, y \rightarrow \infty$

4 a The graph is increasing so b is positive.
The line $y=5$ is an asymptote, so $C=5$.
When $x=0,6=A \mathrm{e}^{b \times 0}+C=A+5$, so $A=1$.
b The graph is decreasing so b is negative.
The line $y=0$ is an asymptote, so $C=0$.
When $x=0,4=A \mathrm{e}^{b \times 0}+C=A+0$, so $A=4$.

4 c The graph is increasing so b is positive. The line $y=2$ is an asymptote, so $C=2$.
When $x=0,8=A \mathrm{e}^{b \times 0}+C=A+2$, so $A=6$.
$5 \mathrm{f}(x)=\mathrm{e}^{3 x+2}$
$=e^{3 x} \times \mathrm{e}^{2}$
$=\mathrm{e}^{2} \mathrm{e}^{3 x}$
$A=\mathrm{e}^{2}$ and $b=3$

6 a $y=\mathrm{e}^{6 x}$
$\frac{d y}{d x}=6 e^{6 x}$
b $y=\mathrm{e}^{-\frac{1}{3} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{3} \mathrm{e}^{-\frac{1}{3}}$
c $y=7 \mathrm{e}^{2 x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 7 \mathrm{e}^{2 x}=14 \mathrm{e}^{2 x}$
d $y=5 \mathrm{e}^{0.4 x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=0.4 \times 5 \mathrm{e}^{0.4 x}=2 \mathrm{e}^{0.4 x}$
e $y=\mathrm{e}^{3 x}+2 \mathrm{e}^{x}$
$\frac{d y}{d x}=3 \mathrm{e}^{3 x}+2 \mathrm{e}^{x}$
f $y=\mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)=\mathrm{e}^{2 x}+\mathrm{e}^{x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{2 x}+\mathrm{e}^{x}$

7 a $y=\mathrm{e}^{3 x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \mathrm{e}^{3 x}$
When $x=2$,
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \mathrm{e}^{3 \times 2}=3 \mathrm{e}^{6}$
b When $x=0$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \mathrm{e}^{3 \times 0}=3
$$

c When $x=-0.5$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \mathrm{e}^{3 \times-0.5}=3 \mathrm{e}^{-1.5}
$$

$8 \quad \mathrm{f}(x)=\mathrm{e}^{0.2 x}$
$\mathrm{f}^{\prime}(x)=0.2 \mathrm{e}^{0.2 x}$
The gradient of the tangent when $x=5$
is $\mathrm{f}^{\prime}(5)=0.2 \mathrm{e}^{0.2 \times 5}=0.2 \mathrm{e}$
$\mathrm{f}(5)=\mathrm{e}^{0.2 \times 5}=\mathrm{e}$
The equation of the tangent in the form
$y=m x+c$
is $\mathrm{e}=0.2 \mathrm{e} \times 5+c$
$\mathrm{e}=\mathrm{e}+c$
so $c=0$
Therefore the tangent to the curve at the point $(5, c)$ is in the form $y=m x$. Thus it so goes through the origin.

