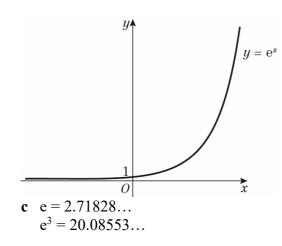
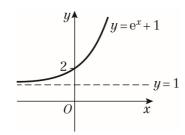
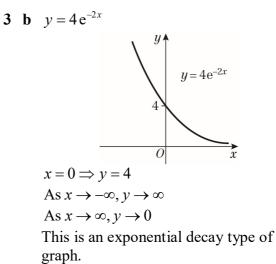
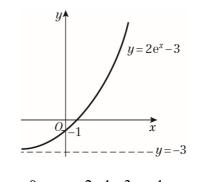
Pure Mathematics 3

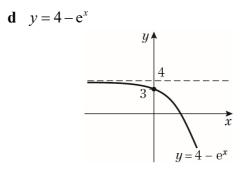

Solution Bank


Exercise 5B

- **1 a** 2.71828
 - **b** 54.59815
 - **c** 0.00005
 - **d** 1.22140


2 a

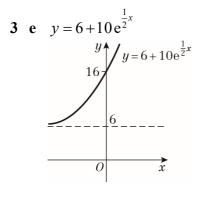

3 a $y = e^x + 1$


This is the usual $y = e^x$ 'moved up' (translated) 1 unit

c $y = 2e^{x} - 3$

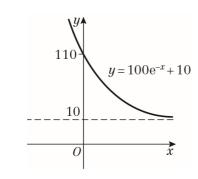
$$x = 0 \Rightarrow y = 2 \times 1 - 3 = -1$$

As $x \to \infty$, $y \to \infty$
As $x \to -\infty$, $y \to 2 \times 0 - 3 = -3$



 $x = 0 \Longrightarrow y = 4 - 1 = 3$ As $x \to \infty$, $y \to 4 - \infty$, i.e. $y \to -\infty$ As $x \to -\infty$, $y \to 4 - 0 = 4$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.


1

Pure Mathematics 3

 $x = 0 \Rightarrow y = 6 + 10 \times 1 = 16$ As $x \to \infty$, $y \to \infty$ As $x \to -\infty$, $y \to 6 + 10 \times 0 = 6$

f $y = 100 e^{-x} + 10$

$$x = 0 \Rightarrow y = 100 \times 1 + 10 = 110$$

As $x \to \infty$, $y \to 100 \times 0 + 10 = 10$
As $x \to -\infty$, $y \to \infty$

- 4 a The graph is increasing so b is positive. The line y = 5 is an asymptote, so C = 5. When x = 0, $6 = Ae^{b \times 0} + C = A + 5$, so A = 1.
 - **b** The graph is decreasing so *b* is negative. The line y = 0 is an asymptote, so C = 0. When x = 0, $4 = Ae^{b \times 0} + C = A + 0$, so A = 4.

4 c The graph is increasing so b is positive. The line y = 2 is an asymptote, so

Solution Bank

When
$$x = 0$$
, $8 = Ae^{b \times 0} + C = A + 2$,
so $A = 6$.

Pearson

5
$$f(x) = e^{3x + 2}$$

 $= e^{3x} \times e^{2}$
 $= e^{2}e^{3x}$
 $A = e^{2}$ and $b = 3$
 $y = e^{2}e^{4x}$
 $A = e^{2}$ and $b = 3$
 $y = e^{2}e^{4x}$
 $e^{2}e^{4x}$
 $e^{2}e^{4x}$

$$f \quad y = e^{x}(e^{x} + 1) = e^{2x} + e^{x}$$
$$\frac{dy}{dx} = 2e^{2x} + e^{x}$$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

Pure Mathematics 3

Solution Bank

- 7 a $y = e^{3x}$ $\frac{dy}{dx} = 3e^{3x}$ When x = 2, $\frac{dy}{dx} = 3e^{3 \times 2} = 3e^{6}$
 - **b** When x = 0, $\frac{dy}{dx} = 3e^{3 \times 0} = 3$
 - c When x = -0.5, $\frac{dy}{dx} = 3e^{3 \times -0.5} = 3e^{-1.5}$

8 $f(x) = e^{0.2x}$ $f'(x)= 0.2e^{0.2x}$ The gradient of the tangent when x = 5is $f'(5) = 0.2e^{0.2 \times 5} = 0.2e$ $f(5) = e^{0.2 \times 5} = e$ The equation of the tangent in the form y = mx + cis $e = 0.2e \times 5 + c$ e = e + cso c = 0Therefore the tangent to the curve at the point (5, c) is in the form y = mx. Thus it so goes through the origin.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.